Methanol Synthesis from CO2 and H2 over Cu/ZnO/Ga2O3 Catalyst

Tadahiro FUJITANI, Masahiro SAITO,* Yuki KANAI,† Masami TAKEUCHI,†

Keiko MORIYA,† Taiki WATANABE,† Motomitsu KAWAI,† and Terumitu KAKUMOTO†

National Institute for Resources and Environment, 16-3 Onogawa,Tsukubas-shi 305

†Research Institute of Innovative Technology for the Earth, CO₂ Chemical Fixation Project Section,

Catalyst Development Group, 16-3 Onogawa, Tsukuba-shi 305

The methanol synthesis activity per unit copper surface area of Cu/ZnO catalyst combined with Ga_2O_3 was higher than those of Cu/ZnO and $Cu/ZnO/Al_2O_3$ catalyst in the hydrogenation of carbon dioxide.

The methanol synthesis from CO₂ and H₂ has recently received much attention as one of the promising process for the utilization of CO2. It has been reported that Cu/ZnO catalysts are highly effective for this reaction. 1,2) The effect of addition of various oxides to Cu/ZnO catalyst have been widely investigated. It was reported that Cu/ZnO/Al₂O₃,^{3,4}) Cu/ZnO/ZrO₂,⁵) and Cu/ZnO/Cr₂O₃²) were good methanol synthesis catalysts with high activity and selectivity. We have recently found Cu/ZnO catalyst combined with Ga₂O₃ is highly active for methanol synthesis from CO2 and H2. In the present work, the activity and the methanol selectivity of Cu/ZnO/Ga₂O₃ catalysts were examined and they were compared with those of Cu/ZnO and Cu/ZnO/Al₂O₃ catalysts. Cu/ZnO, Cu/ZnO/Ga₂O₃ and Cu/ZnO/Al₂O₃ catalysts were prepared by a copresipitation method. A mixed aqueous solution of metal nitrates (total metal concentration 1 mol/l) and an aqueous solution of Na₂CO₃ (1.1 mol/l) were added dropwise to distilled water. Subsequently, the precipitate was filtered out, washed with distilled water, dried in air at 100 °C overnight, and calcined in air at 350 °C for 2 h, and screened to a size between 60 and 80 mesh. All the catalysts were reduced with a gas mixture of H₂ (10%) and He (90%) at 250 °C for 2 h in a reactor at a total pressure of 50 kg/cm²G. A hydrogenation reaction of CO₂ with H₂ was carried out in a flow reactor. A gas mixture of H2 and CO2, of which the mole ratio of H2 to CO2 was 3, was fed through under a total pressure of 50 kg/cm²G. The reaction products were analyzed by gas chromatography. The copper surface area of each of the catalysts was measured by the technique of N₂O reactive frontal chromatography. 6) Methanol and CO were mainly produced and a trace amount of methane, dimethylether and metheylformate were also detected.

Table 1 gives the activities (conversion of CO_2) and methanol selectivities of Cu/ZnO, $Cu/ZnO/Al_2O_3$ and $Cu/ZnO/Ga_2O_3$ catalysts with various composition for the hydrogenation of CO_2 . In the case of $Cu/ZnO/Ga_2O_3$ catalysts, the highest methanol synthesis activity, i.e., mass time yield (MTY), was obtained at 25 wt% of Ga_2O_3 content. And the activity of this $Cu/ZnO/Ga_2O_3$ catalyst was higher than those of Cu/ZnO and $Cu/ZnO/Al_2O_3$ catalysts. Figure 1 shows the methanol synthesis activities of Cu/ZnO, $Cu/ZnO/Al_2O_3$ and $Cu/ZnO/Ga_2O_3$ catalysts as a function of copper surface area. This clearly shows that for each of the catalyst system there

Table 1 Activity and Cu surface area Cu/7nC	, Cu/ZnO/Al ₂ O ₃ and Cu/ZnO/Ga ₂ O ₃ catalysts ^{a)}
Table 1. Activity and Cu surface area Cu/ZnC	, $Cu/ZnO/Ai_2O_2$ and $Cu/ZnO/Ga_2O_2$ catalysis ⁻²

Catalyst	Reaction temp	Conversion	Selectivity	MTYb)	Cu surface area
composition ^{c)}	°C	%	%	g-CH ₃ OH/kg-cat•h	m ² /g-cat
Cu/ZnO	200	5.8	77.2	286	27.8
50/50	250	17.4	42.1	514	
Cu/ZnO/Al2O3	200	5.7	74.0	285	35.4
50/4 0/10	250	19.7	48.1	637	
Cu/ZnO/Ga2O3	200	6.9	73.2	319	25.0
50/4 5/5	250	20.4	47.6	379	
Cu/ZnO/Ga2O3	200	7.1	72.6	321	26.9
50/40/10	250	21.5	50.2	679	
Cu/ZnO/Ga2O3	200	7.4	76.4	363	28.4
50/30/20	250	22.1	52.2	736	
Cu/ZnO/Ga2O3	200	7.7	77.6	375	29.9
50/25/25	250	22.1	53.2	738	
Cu/ZnO/Ga2O3	200	6.7	73.4	318	27.5
50/20/30	250	21.1	48.0	645	
Cu/ZnO/Ga2O3	200	3.8	69.1	203	17.5
50/10/40	250	17.1	39.6	405	
Cu/ZnO	200	2.4	67.5	128	14.2
50/50	250	14.4	32.9	350	

a)Reaction condition;H2/CO2=3, Total pressure=50 kg/cm²G, Catalyst weight=1.0 g, Feed gas rate=300 cc/min. b)Mass time yield. c)Composition of catalyst is shown by wt%.

is a linear relationship between methanol synthesis activity and copper surface area, and also indicates that the specific methanol synthesis activity, i.e. MTY per copper surface area, of Cu/ZnO/Ga₂O₃ catalyst is about 40% higher than those of Cu/ZnO and Cu/ZnO/Al₂O₃. In addition, it was found that the copper surface area of the catalyst containing 20-30 wt% Ga₂O₃ was higher as compared with Cu/ZnO catalyst.

In summary, it is clear that the addition of Ga₂O₃ to Cu/ZnO highly enhances the specific methanol synthesis

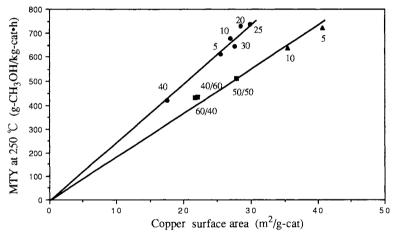


Fig. 1. Methanol synthesis activity (MTY) as a function of copper surface area.

- ;Cu/ZnO catalysts [Cu(40)/ZnO(60), Cu(50)/ZnO(50), Cu(60)/ZnO(40)]
- ▲;Cu(50)/ZnO/Al₂O₃ catalysts [Al₂O₃ content, 5, 10 wt%]
- \bigcirc ; Cu(50)/ZnO/Ga₂O₃ catalysts [Ga₂O₃ content, 5, 10, 20, 25, 30, 40 wt%]

activity of Cu/ZnO. At present, however, no clear explanation for the ositive effects of Ga_2O_3 incorporated can be offered. Further investigation on the role of Ga_2O_3 in $\text{Cu/ZnO/Ga}_2\text{O}_3$ catalyst will be preformed.

This work was partly supported by New Energy and Industrial Technology Development Organization (NEDO). References

- 1) B. Denise and R.P.A Sneeden, *Appl. Catal.*, **28**, 235(1986).
- 2) T.Tagawa, G.Pleizier, and Y. Amenomiya, Appl. Catal., 18, 285(1985).
- 3) Y. Amenomiya and T. Tagawa, "Proc. 8th Int. Congr. Catalysis," Verlag Chemie, Weinheim (1984), vol. II, p.557.
- 4) E. Ramarson, R. Kieffer, and A. Kiennemann, Appl. Catal., 4, 281(1983).
- 5) Z. Xu, Z. Qian, L. Mao, K. Tanabe, and H. Hattori, Bull. Chem. Soc. Jpn., 64, 1658(1991).
- 6) G. C. Chinchen, K. C. Waugh, and D.A. Whan, Appl. Catal., 25, 101(1986).

(Received March 24, 1993)